DRIVE FOR E

VEICHI {%ﬁ“@.= L] veicHL.com (© 400-600-0303

Product usage instructions

VC5 Series PLC Custom Variable Usage Instructions

Suzhou VEICHI Electric Technology Co. Ltd
2023/6

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
1730

VEICHI gl s |

IRV o -1 o) (1SR

1.1 Custom Variables........cc.eieuieiiieiiierieee ettt e
1.2 Define Variablescoceiiiiiiiieiiieeee e
1.3 DefiNING ATTAYS ..oeccuviieeiiieeiiie et eeitee et e et e e e eeeeeiveeeenbeeeetaeeesbeeesaseeesnnns
1.4 DefiNing STIUCES ...cccuviieiiiieeiie ettt ettt e e e et e e e tb e e eebeeeeaseeeenns

1.5 HOW t0 USE VAr1abIeS...c..ueiiiiiiiiiiieceeee e
2. Binding of variable addressescccceeeeiiieiiiieiciiieeee e

2.1 OVEIVIEW ..ttt ettt ettt ettt ettt ettt ettt e e e e e
2.2 Var1able PIOPETTIEScccueieiiieieiiieeiiie ettt ee e
2.3 Array variable binding soft cOmponentsccceeevveeerciieeriieeeniie e

2.4 Structure variable binding soft cCOMpPoONentscccccveeevcieeeiieeeniieeenieeene
3. Using variables as array SubSCIIPLSc..eeevcvveeeriireeiiieeeciee e

3.1 RUIES OF USE ..ot
3.2 Programming EXamples..........ccccviiriiiiiiiiiieiiiieieiieeeee e
321 EXAMPIE 1ottt
RIVN B €111 o) (S0
RINRC I 5 ;1111 o) (SK SRR

4. Pointer type variablesSccceeecuiiieiiiieeiiiee et

4.1 Definition of pointer type variables............ccevcvieriieriiierii e

4.2 PT Pointer Address OPerationccceeeeveerieenieenieenieesieesseeseeesseenneens
S.Function BIoCK FBooooiiiiie et

5.1 New Function BIOCK (FB)ooooiiiiiiiiieece e
5.2 Function block programmingccceeeeeriieriieniieenieeee e
5.2.1 Example - wrapping incremental count with FB............ccccocoiniiiiniiiinn,
5.2.2 Function block import and eXportc.ceeeerieeriieniieniienie e

5.2.3 Function block setting initial valuecccoocveiieniiiiiiinieiececee e

6. FUNCHON BIOCK FC ...ttt e e e ea e e e e

Suzhou Veichi Electric Co.,Ltd
Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
2/ 30

VEICHI {%ﬁ“m: [veicHLcom (© 400-600-0303

DRIVE FOR EVER

0.1 NEW FUNCHON. ..ottt ettt ettt et e et e et e et e st e e seteesaeeenaeeeaeeens 28
6.2 Function Block Programming..............ccceieiiiiiieiiieeiiiieciee ettt eevee e ivee e 28
6.2.1 Example - Wrapping addition functions with FC.............ccceoviiiiiiniiiiiiiiiceeeeee e, 29
6.2.2 Function block import and EXPOTtcceeruiieriierieiiiienie ettt ettt e beesneeeees 30

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
37/30

VEICHI a5

1. Variables

1.1 Custom Variables

In the VCS5 programming system, in addition to programming directly using direct addresses, such as X, Y, M, D, R and

other components for programming, it is also possible to program in the form of "variables" without specific storage

addresses to achieve the desired control logic, or the complete control process of the application object, which improves

the convenience and readability of code writing.,

Supported custom variables

Type Capacity Data Type Description
Pointer 4096 Point (32bit) BOOL/ INT/ DINT/ REAL Arrays Pointer variables;
Power down is not saved;
BOOL INT/ DINT/ REAL Variables,
INT 2MB (8 bit) INT/ DINT/ REAL Arrays, 256KB power down save,
DINT INT/ DINT/ REAL Combination | Other power down is not
REAL Structures saved;

1.2 Define Variables

VCS5 supports custom variables, and users can program directly with variable names in their programs by defining global

variables and variable tables.

The following rules need to be followed when defining variable names:

1. Maximum length of 64 bytes;

2. Can only be composed of " _, letters, numbers, Chinese characters" and cannot start with ", numbers" ;

3. Cannot be renamed with "soft component forms, constants, standard data types, instructions" ;

4. Cannot be "ARRAY, TRUE, FALSE, ON, OFF, NULL" and other keywords,

Variable data type
Variable definitions support structures and arrays, and variable data types are supported as follows:
Variable data type
Data Type Description
BOOL Boolean type
INT Single-word integer type
DINT Double-word integer type
REAL Real Number Type

Define Variables
The "Global Variables" in the Project Management section of the Auto Studio programming software is used for variable

Suzhou Veichi Electric Co.,Ltd

Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

4 /30

VEICHI

DRIVE FOR EVER

HERS

] veicHLcom

(© 400-600-0303

management, which allows you to add, delete and edit variables.,

Project Manager

=-5d Custom Variables(VC5)

=-[ull Global Variable

----- =] System Variable

----- =] Element Comment
R-[E] Struct
----- =] Function Block Data

SE

|

Variable Table

I MAN G VAR x| v
Index |Variable Name DataType IntalVale DataHold Eement Note
1 A BOOL OFF Not Hold
) B BOOLY] Not Hol
3 it INT[3] Not Hol
4 Var_armay INT[3] Nat Hold
5

1. Add variable table and variables: right-click "Variable Table" and select "New Variable Table" to create a new variable

table.,

Project Manager

+H-[El Struct

=5 Custom Variables(VC5)
&[] Global Variable

-----] System Variable

----- =] Element Comment

----- =] Function Block Data

=-=| Variable Table

2. Double-click the variable table to enter the variable editing interface

o In the variable table, right mouse click on the pop-up menu, you can insert or delete variables

e If you enter a custom variable name in the variable name column of the variable table, you can program directly with the

variable name when programming.

e Data types can be selected from BOOL, INT, DINT, REAL, as well as arrays and structures (structures need to be defined

in advance). When you select array as the data type, you can set the type and length of the array variable in the pop-up

dialog box, and when you select a previously defined structure, you can define the structure variable.

e The initial value column can define initial values for variables, and arrays and structures can define initial values for each

element individually

Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

Suzhou Veichi Electric Co.,Ltd

5730

VEICHI

DRIVE FOR EVER

HERS

[] veicHL.com

(© 400-600-0303

e Power-down hold can be selected for both hold and non-hold types, and the initial value setting is only valid for non-

hold variables.

‘ AN) VAR x

Index Varatle Name DataType IialVabe Dataod Bement Mote
| BOOL i Not Hold

1B B0L] Mot ol

1B VT Mot ol

b vaamy INT[3] Not Hol

5 dush DINT 0 Not Hold

P B0l IOF Nothid

1 EERHA BOOL OF Moo

§

1.3 Defining Arrays

User programming can define arrays if the data type selected is ARRAY,

1. In the pop-up dialog box, select the type and length of the array variable, and click "OK" to define the array.,

I MAIN €3 VAR 1 x|

Index | Variable Name DataType Initial Value | DataHold | Element Note
1 A BOOL OFF Not Hold
B ARRAY Not Had]
3 Bl INT[3] \ N Alnt Linld
4 var_array INT[3] o NArTay X
5 cfesth DINT
6 H5% BoOL ON
7 R R -124 BOOL OFF
8 DataType 'BOOL v ‘

Number ‘3

8

2. Click the initial value column of the array variable to enter the initial value setting interface of the array variable:

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

6 /30

VEICHI

DRIVE FOR EVER

ﬁﬁ“ m,ﬁ L[] vercHLcom t\@ 400-600-0303

[m] MAIp O VAR 1* x

Index Variable Name DataType |Inl:a| Value \[)ata Hold Element Note
1 A BOOL OFF Not Hold
2 B BOOL[3] Not Hold 1
El B1
4 var_array Init Value x
5 cfesth
6 Hea Variable Name DataType Elenent Initial Vali Note
7 PITE{EE-124 Eh] BOOL[3]
E EBl0] EOOL OFF
El1] BOOL OFF
E[2] BOOL OFF

When an array is used in the command, the access starts from the element specified by the subscript of the array,

For example:
e Assign 6 elements of var_array [0] to var_array [5] to DO-D5

Annotation

MO
| — 9 EMOV array[0]] 6 1

1.4 Defining Structs

If you need to define a structure variable in the variable definition, you need to define the data structure of the structure in
advance. Right-click "Structure" under "Global Variables", select "New Structure", and enter the name of the structure to

define the structure. When you define the variable in the variable table, you can select the structure type as the data type of
the variable and define the variable as a structure variable.,

=51 Custom Variables(VC5) ~
=[] Global Variable

EIEl Variable Table

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
7 /30

VEICHI

DRIVE FOR EVER

HERS

[] veicHL.com

(© 400-600-0303

== 1
IR | 7 r.ct member
I

=5 Custom Variables(VC5)
EIIE Global Variable

“-[Z] System Variable
= Elemg#nt Comment

St

~~[E Function Block Data
=[5 Variable Table

£1-2% Program block
{6 MAIN

X
A
|| |Index Menber Name DataType Remark
1 Menberl BOOL
= |2 Menber?2 INT[2]
3 Menbers BOOL[2]
M ola Nember4 DINT
5 Members REAL
i} Menherf INT
i T Member? EOOL
g
1 —.—

After creating structure and member variables, you can define structure variables by selecting structure in the data type of

variable definition

Struct Member X
Index Member Hame DataType Remark
1 Memberl EBOOL
2 Memberz INT ~
3 Member3 ARRAY
BOOL
4 Membher4
5 DINT
REAL

_sBECATMaster
_sECATS]lave

sMchxis

Click the Initial value column of a structure variable to enter the initial value setting interface of the structure variable, and

you can set the initial values of the structure variable members.,

[l MAIN" 3 VAR T * > |

Index | Variable Name DataType Initial Value
1 A BOOL OFF

2 B BOOL[3]

3 B1 INT[3]

4 var_array INT[2]

5 cfesth DINT

6 e BOOL

7 P A 124 BOOL

8 struct1 Struct_1

9

Init Value

Data Hold

Elerment Note

Variable Name

DataType Element Tnitial Valu

Note

= structl
Memberl
Member2
Member3
Member 4

Struct_i
BOOL OFF

INT 233

REAL 1. 500000
DINT 1z361]

1.5 How to use variables

Once the variables are defined, the variable names can be used directly in programming the program without the need to

assign soft components,

e Direct variable programming operations.

e When using array variables, the program uses "[number]" to represent the array elements, starting from 0.

e When using structure variables, program "structure variable name. Member Variable" to indicate a member of a structure.

Suzhou Veichi Electric Co.,Ltd

Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China

8 /30

VEICHI {%ﬁu mE‘. [veicHLcom if:‘» 400-600-0303

2. Binding of variable addresses

2.1 Overview

The custom variables in VC5 support binding the addresses of soft components, and the addresses of custom variables
are associated with the addresses of soft components after binding. To implement the function of custom variable binding

software, just fill in the address field in the variable table with the address you need to associate, and then compile the

project after inputting, the software will automatically generate the assigned address,

Project Manager 2 x M MAIN 3 VAR 2 x
E‘E Custom Variables(VC5) " ||lIndex Variable Name DataType Inital Value Data Hold Element Note
+[1] Global Variable 1 var i BOOL OFF Not Hold [[M100
[l System Variable 2 var-2 INT 102 Not Hold D10
~[E] tlement Comment 3 var-3 DINT 250 Not Hold D20
E;I E Struct var-4 REAL 1.250000 Not Hold D30
[L Struct 1 STRUCT Struct_1 NotHod | D1000
E| Function Block Data 6
=HEl variable Table
-1 VAR_1
.

2.2 Variable Properties

After a custom variable is bound to a soft component, the power-down hold property will follow the bound soft component.
As shown in the figure below, M100 is in the power-down hold area, so after Var_2 is bound to it, the power-down hold
property becomes hold type accordingly, while D100 is in the non-power-down hold area, then Var_3 is bound to it as non-
power-down hold type.

After binding the component, the power-down hold property will change automatically according to the situation, and the

user does not need to set it.

Y] MAIN | €3 VAR 1% €} VAR 2* x Al
Index |Variable Name DataType Inidal Value | DataHold |Element Note
1 var-1 BOOL OFF Not Hold M100
2 var-2 INT 102 Not Hold D10
3 var-3 DINT 250 Not Hold D20
4 lard REAL 1250000 | NotHod |00
5

2.3 Array variable binding soft components

To bind soft components to an array variable, simply fill in the address field in the variable table with the address to be
mapped.
1. Word variables occupy the corresponding number of subcomponents according to the variable type, one INT variable
occupies one 16-bit component, and one REAL, DINT variable occupies two 16-bit components.
2. BOOL variables occupy the corresponding number of bit components.
3. Array variables can only bind soft components of corresponding types, i.e. word variables can only bind word
components and bit variables can only bind bit components.

|

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
9 /30

VEICHI RS

For example, if you define an array variable of BOOL type Array 0 with length 10 and specify to bind M0
components, it will occupy components M0-M9; if you define an array variable of INT type Array 1 with length 10
and specify to bind DO components, it will occupy components D0-D9..

2.4 Structure variable binding soft components

When binding soft components through structure variables, just fill in the address column in the variable table (note: the
address can only be a word component, not a bit component), after filling in the address, click "Compile", the address of
the structure member will be automatically generated by Auto Studio, the specific address assignment rules are as follows.
1. INT-type variables occupy one 16-bit component, and REAL and DINT-type variables occupy two 16-bit components.
2. Consecutive multiple BOOL types as a whole are aligned by 16 bits, that is, the first allocation address of 16-bit soft
component bit0 for consecutive BOOL type members, and the allocation addresses of consecutive multiple BOOL type
variables are incremented by 1 bit in turn; for non-consecutive BOOL types, each is handled independently by 16-bit
alignment.

3. Arrays and structure variables are aligned by 16 bits as a whole.

For example, define a variable Struct 1 of type Struct and specify the binding D1000 component

Struct Member pad
Index Member Name DataType Remarlk
1 Memberl EOOL
2 Memberz INT[2]
3 Memberz EOCL[2]
4 Memberd DINT
B Memberh REAL
6 Menberé INT v
7 Member’ EOOL
3

e Structt 1. member 1 // Type is BOOL, so bind D1000.0

eStruct 1. member 2 // type is an INT array, so bind D1001, D1002

e Struct 1. member 3 // Type is BOOL type array, so bind D1003.0, D1003.1

e Struct 1. member 4 // Type is DINT, so bind D1004

e Struct 1. member 5 /REAL, Therefore binding D1006

e Struct 1. member 6 // Type is INT, so bind D1008

e Struct 1. member 7 // Type is BOOL, so bind D1009.0

1. Structs are bound like other variables, just fill in the address field in the variable table with the address to be mapped.

Suzhou Veichi Electric Co.,Ltd
Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
10 / 30

VEICHI|

DRIVE FOR EVER

HERS

[] veicHL.com

(.@ 400-600-0303

Project Manager

=52 Custom Variables(VC5)
=--[1] Global Variable

~[=] System Variable
i[E] Element Comment
=]

! Struct_1

------ [=] Function Block Data
EIIEI Variable Table

-[5] SBR_O1

I AN [€ VAR 13 VAR2 | v
Index Variable Name DataType Inital Valve |Data Hold | Element Note
1 var-1 BOOL OFF Not Hold M100
2 var-2 INT 102 Not Hold D10
3 var-3 DINT 250 Nat Hold D20
4 var4 REAL 1250000 | Not Hold D30
5 STRUCT Struct_t Not Hol
]

After entering the address of the soft component, you need to compile the project, which will automatically generate

the assigned address, then double-click the initial value column of the corresponding structure variable in the variable

table, you can see the mapped address of each member of the structure and set the initial value of the variable.

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

11 / 30

Init Value
Variable Name |DataType Element Initial Vali|Nete
= STRUCT Struct_1 D1o00
...... Nemberl EBOOL Dloo0. 0 OFF
~E Nemberz INT[Z2]
------ Memberz[0] INT D100l 0
------ Memberz[1] INT D1002 0
~E Member3 BOOL[2]
------ Member3[0] ROOL D1003. 0 OFF
...... Menber3[1] BOOL D1003. 1 OFF
...... Menber4 DINT D1004 0
------ Menbers REAL D1006 0. 000000
------ Nemberf INT D1008 0
...... Member? EBOOL D1o09. 0 OFF

VEICHI RS

3. Using variables as array subscripts

3.1 Rules of Use

The general rule for using variables as array subscripts: at most one variable in the entire variable composition is
used as a subscript.

The format is defined as array[index] or stru[index].var, where array denotes an array or array of structures, index,
var, 1 denotes a variable, stru denotes a structure, and so on.

Basic combination types

e array variables, which are used as variables for arrays and only support arrays of bit variables, arrays of word variables,
arrays of double word variables, arrays of floating-point variables, etc., and do not support pointer variables;

e index variables, as variables with array subscripts, only support single word variables INT (16 bits) and double word
variables DINT (32 bits), no soft components, no other variables such as bit variables, floating point variables, pointer
variables, etc.; support a definite element of an array or a definite member of a structure as index variables, such as
array[index[5]], array[stru.index], and does not support array elements with variable subscripts or array members of a
structure as index variables, such as array[index[i]], array[stru[i].index];

Complex combination types

e Supports using elements of arrays (elements) as operands of instructions, i.e. index variables at the end, e.g.
array[index], stru. array[index], strul[3]. stru2. array[index], strul.stru2. stru3. array[index] etc.

e Supports using members of the array of structures as operands of the instruction, i.e. the index variable is placed in
the middle, e.g. stru[index]. Var, strul[index]. stru2.var, strul.stru2[5]. stru3[index]. array [3] etc..

e The use of a single structure element in an array of structures as an operand of an instruction is not supported, i.e.,
the index variable is placed at the end, such as stru[index], strul.stru2. stru3[index], strul.stru2[2]. stru3.stru4[index],
etc.

e Arrays of structures with double or multiple variables, such as stru[index1]. array[index2], are not supported.

® Two-dimensional or multi-dimensional arrays array[index 1] [index2] are not supported.

3.2 Programming Examples

3.2.1 Example 1

To assign a value to an element of an array, the program is as follows:

Suzhou Veichi Electric Co.,Ltd
Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
12 / 30

VEICHI

DRIVE FOR EVER

HERS

[] veicHL.com

(© 400-600-0303

Anmotatien
i
W F— My 1 indexld]
my 123 116arr [index16]]
Anmotatien
Moo
H1 |+ 1 | = index16 0 H moy 1]]
H IHC indexlé I
Ir MoV B66 i16arr [index1s]]
Anmotation

Start assigning 123 to il6arr[1], after that, each time M100 is triggered, it will assign 666 to the array elements behind it

in a smooth manner; after starting:

Element Name data type display format current value new value
= il6arr Array Decmal
...... I153IT[D] INT Decimal 0
|1E-arr[1] INT Decimal 123
...... |1ﬁarr[2] INT Decimal 0
- ilbarr[3] INT Decimal 0
...... |1E-arr[4] INT Decimal 0
i163rr[5] INT Decimal 0
...... i163rr[6] INT Decimal 0
I16EIIT[?] INT Decimal 0
...... |1ﬁarr[8] INT Decimal 0
|1E-arr[9] INT Decimal 0
After M100 triggers once:

M100 after multiple triggers:

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

13 / 30

Element Name data type display format current value new value element remark
& it6arr Array Decimal
...... ilsan—[o] INT Decimal 0
i163rr[1] INT Decimal 123
...... llsarrlz] INT Decimal 666
i153l’l’[3] INT Decimal 0
...... |16arr[4] INT Decimal 0
i153l’l’[5] INT Decimal 0
...... i16arr[6] INT Decimal 0
= i16arr[7] INT Decimal 0
...... i163rr[8] INT Decimal 0
|16arr[9] INT Decimal 0
TNT Narirnsl

VEICHI

DRIVE FOR EVER

ﬁﬁ“ m,ﬁ [veicHicom (© 400-600-0303

QOutput Window
Element Name data type display format current value new value element remark
= iarr Array Decimal
...... i16arr[0] INT Decimal 0
...... i16arr[1] INT Decimal 123
...... i16arr[2] INT Decimal 666
----- i16arr[3] INT Decimal
...... it6arr4] INT Decimal 666
...... it6arr]5] INT Decimal 666
...... it6arr6] INT Decimal 666
...... it6arr[7] INT Decmal 666
...... it6arr[8] INT Decimal 666
...... it6arr[9] INT Decimal 0
INT Decimal

3.2.2 Example 2

Operate on a member variable of a structure array, structure definition:

&[] Global Variable ~ || struct Member
------ [E] System Variable
------ [Z] Element Comment Index Member Name DataType Remark
- Struct 1 b_enable BOOL
- 2 i16_a INT
------ = Fun.ctlon Block Data 5 i16.b DINT
=-[E Variable Table
L VAR_1 4
-3 Program block
...... M MAIN
------ [5] SBR_01
101 0
111 s DMOV 2 index32]
OFF
B SET Struct_arr[index32]. b_enable]
0 0
[DADD index32 2 index32add]
Structfa.rr[irlldeiﬁZ]. b_enable Struct_arr [ir;dexSZjadd]. b_enable
1 r W

After M101 is triggered, Struct_arr[2].b_enable is set, and according to its state, Struct_arr[3].b_enable is controlled:

M101 2

[DMOV 2 index32]

ON
r SET Struct_arr[index32]. b_enable 1

2 3

[DADD index32 1 index32add]

Struct_arr[index32]. b_enable Struct_arr[index32add]. b_enable
-

18

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
14 / 30

VEICHI ﬁﬁu @.E\, L] veicHL.com &@ 400-600-0303

DRIVE FOR EVER

Jutput Window
Element Name data type display format current value new value element remark
~E struct_1[0] Struct Decimal
""" b_enable BOOL Binary OFF
""" i16_a INT Decimal 0
""" i16_b DINT Decimal 0
B struct_1[1] Decimal
""" b_enable BOOL Binary OFF
""" i16_a INT Decimal 0
""" i16_b DINT Decimal 0
~El struct_1[2] Struct Decimal
------ b_enable BOOL Binary | on
------ 16_a INT Decimal 0
""" i16_b DINT Decimal 0
~El struct_1[3] Struct Decimal ’ .
------ b_enable BOOL Binary | lon |
------ i16_a INT Decimal 0
""" i16_b DINT Decimal 0
~El struct_1[4] Struct Decimal
""" b_enable BOOL Binary OFF
""" i16_a INT Decimal 0
""" i16_b DINT Decimal 0
INT Decimal

1| 4] ¥ v Y Compile A4 Communication A Convertion AFind sNonitoring

3.2.3 Example 3

FB parameters use variables as array subscripts, and the program is as follows:

M102
{11 [MOV 2 index_in]
i MoV 5 index_out]
- MOV 88 116arr[index_in]]
FB 02:FB_ADD
Enable
il6arrl[index_in] — addin addout |—1il6arr[index_out]

The FB program is as follows:

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
15/ 30

VEICHI ﬁﬁu @.E\, L] veicHL.com \@ 400-600-0303

DRIVE FOR EVER

[MAIN | € VAR 1 [© vaR 2[F] FBOT* x| |
Index Variable Name Variable Type Data Type |Initial Value Power-off Hold Comments
1 addin IN INT 0 Not Hold
2 addout ouT 0 Not Hold
3
Annotation ~
SMO
I B 00 #addin 1 Haddont]
Annotation

After M102 is triggered, the value 88 is assigned to il6arr [2], and after FB calculation, the value is assigned to il6arr

[5]. The procedure of FB is to add 1 to the input parameter and assign it to the output,

M102 -
{1} MOV 2 index_in 1
5
i MOV 3 index_out]
88
i MOV 88 il6arr[index_in]]
FB_02:FB_ADD
Enable
88 il6arrlindex_in] — addin addout [—il6arr[index_out] 89
Output Window
Element Name data type display format current value new value element remark
2 it6arr Array Decmal
|16arr[0] INT Decimal 0
...... d6arr1 INT Decimal 0
- i16arr[2 INT Decimal 88
...... i153l’l’[3] INT Decimal 0
- ilbarr[4 INT Decimal 0
------ iL6arr[5 INT Decimal 89 J
i16arr[6] INT Decimal 0
...... |16arr[?] INT Decimal 0
i153l’l’[8] INT Decimal 0
...... i163rr[9] INT Decimal 0

4. Pointer type variables

4.1 Definition of pointer type variables

A pointer variable can be used as a pointer to store the address of a soft component or an array variable, and can be used

as indirect addressing or variable addressing when programming a program.

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
16 / 30

VEICHI gl s

A pointer variable is defined when the variable name is defined in the variable table and "POINTER" is selected as the data

type. The initial value of a pointer variable is NULL, i.e., a null pointer, and a pointer variable is not held when power is

lost.

[M] MmAIN-" £ VAR 1* x [£} var 2 [[E] FB.01* | [E] FC 01

Index Variable Name DataType Initial Value Data Hold Element Note
1 A BOOL OFF Not Hold
2 B BOOL[3] . Not Hold
3 Bl INT[3] Not Hold
4 var_array INT[3] = Not Hold
5 cfesth DINT 0 Not Hold
6 HEE BOOL OFF | Not Hold
7 P E-124 BOOL OFF Not Hold
8 structl Struct_1 | Not Hold
9 PTO POINTER ~ |NULL Not H
10 ARRAY /M

BOOL

INT

DINT

REAL

Struct_1

_sECATMaster

_SECATSlave

_sMcAxis

Pointer type variables can do address operations and indirect addressing operations. When using the pointer address
operation instruction, it indicates the address operation of a pointer. The instructions that support pointer address operations
are listed below. When using these instructions, the functions of fetching address, pointer address offset, and pointer address
comparison are implemented.

Instructions for pointer address operations

Instruction Description

PTGET Pointer variable assignment instructions

DPTGET Pointer variable assignment instruction (double word)

RPTGET Pointer variable assignment instruction (floating point)

PTINC Pointer variable address increment 1 instruction

PTDEC Pointer variable address minus 1 instruction

PTADD Pointer variable addition instructions

PTSUB Pointer variable subtraction instructions

PTMOV Pointer variable address mutual assignment instruction

PTLD= Pointer variable contact comparison equals instruction

PTLD< Pointer variable contact comparison less than instruction

PTLD> Pointer variable contact comparison is greater than the instruction

PTLD<> Pointer variable contact comparison does not equal instruction

PTLD>= Pointer variable contact comparison is greater than or equal to the
instruction

PTLD<= Pointer variable contact comparison less than or equal to
instruction

PTAND= Pointer variable and contact comparison equals instruction

PTAND< Pointer variable and contact comparison less than instruction

PTAND> Pointer variable with contact comparison larger than the
instruction

PTAND<> Comparison of pointer variables and contacts is not equivalent to
the instruction

PTAND>= Pointer variable and contact comparison is greater than or equal
to the instruction

PTAND<= Pointer variables are compared with contacts less than or equal to

Suzhou Veichi Electric Co.,Ltd

Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

17 / 30

VEICHI {585

the instruction

PTOR= Pointer variable or contact comparison equals instruction

PTOR< Pointer variable or contact comparison less than instruction

PTOR> Pointer variable or contact comparison is greater than the
instruction

PTOR<> Pointer variables or contact comparisons are not equivalent to
instructions

PTOR>= Pointer variable or contact comparison greater than or equal to
instruction

PTOR<= Pointer variable or contact comparison less than or equal to

instruction

Except for the instructions in the table above that operate on pointer addresses, other instructions that use pointer

type variables indicate indirect addressing operations on pointer type variables, i.e., operations on the values of soft

components or array variables pointed to by pointer type variables. Indirect addressing of pointer variables is

indicated by "*pointer type variable" in programming.

Example

e Address manipulation of pointer type variables

FT0 points to D0 address

Mo
10 {41 {

DFTGET FTO i}

FTO points to the next address

M
Wil {+1 { FTIHC FTO]

Armotation

o Indirect addressing of pointer type variables

Add the =oft component pointed by FTO addre=z=z to D100

nz
I -~y ADD *#FTO D100 D300

Annotatien

The programming software will automatically add "*" in front of variables of pointer types used in instructions other than

those in the above table for pointer address operations.

4.2 PT Pointer Address Operation

1. Getting the pointing address of a pointer variable

The pointer type variable pointing address can be obtained by the pointer variable assignment instruction (PTGET).

Example 1

When the instruction energy stream is valid, the pointer types variable PTO points to D10, i.e. PTO gets the address of D10

soft component.

Suzhou Veichi Electric Co.,Ltd
Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

18 / 30

VEICHI {585

FTO points to D10 address

)
| +——[DPTGET FTO nio]

Pointer type variables can point to bit components (X, Y, M, S), word components (D, R, W), and custom array variables.
After a pointer type variable acquires a pointer address, you can add or subtract operations to the pointer address of the
pointer type variable to indicate the component offset to which the pointer types variable points.

Example 2

FTO points to the next address

m
D — FTIHC FTO 1

If the instruction is valid, it will offset the soft component pointed by the pointer variable PTO by one. If PTO points to D10,
after executing PTINC instruction, PTO points to D11. After executing PTINC, the system will automatically adapt the

offset by one according to the type of component or array variable pointed by the pointer variable.

PTO Current Pointer PTO pointer after executing PTINC
D10 D11
M200 M201
Array [2] Array [3]
Example 3
M2
PTDEC PTO]

1T L
|

If the instruction is valid, the offset of the soft component pointed by the pointer variable PT0 will be reduced by one. For
example, if PTO points to D10, after executing PTINC instruction, PTO points to D9. After executing PTDEC, the system

will automatically adapt the offset minus one according to the type of component or array variable pointed by the pointer

type variable.
PTO Current Pointer PTO pointer after executing PTDEC
D10 D9
M200 M199
Array [2] Array [1]
Example 4
M3
—t— PTADD PTO b} PT1 1

When the instruction is valid, the soft component offset pointed by the pointer address of PTO is assigned to PT1 by 5, e.g.
PTO points to D10, after executing the example instruction, PT1 points to D15.

PTADD PTO PTO

[S3]

M4
—— it

—_

When the instruction is valid, the soft component offset of the PTO pointer address will be assigned to PTO by 5, e.g. PTO
originally points to D10, after the execution of the example instruction, PT0 points to D15.

Example 5

| Ty [PISLB PTO 2 PT1]

Suzhou Veichi Electric Co.,Ltd
Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
19 / 30

When the instruction is valid, the soft component offset of the pointer variable PTO is assigned to PT1 minus two, e.g. PT0

points to D10, after the execution of the example instruction, PT1 points to D8.

PTO Current Pointer

After executing the command

PT1 Pointer

PTO Pointer

D8

D10

PTO 2

PTSUB PTO]

1Tt L
|

When the instruction energy stream is valid, the soft component offset of the PTO pointer address minus 2 is assigned to
PTO, e.g. PTO originally points to D10, after executing the example instruction, PTO points to DS8.
Example 6

Pointer assignment to each other is the address backup of pointer variables, i.e., pointing to the same address;

Mo
— {#——1{ PTGET PTO D10 1

PTMOV PTO PT1]

M7
—t—

When the instruction energy stream is valid, the PT1 pointer points to the position of the PTO pointer, i.e., D10

All of the above examples require the PTGET instruction to obtain the pointer address first; when PT points to an array
variable, pay attention to the out-of-bounds check when executing the address operation instruction

Example 7

The contact comparison of a pointer is a comparison of the address of the pointer pointing to a soft component with

the address of the object of comparison

16807000040 0
MO
——T PTGET PTO D10 1
16807000040 0
M1 . ¥0
|—m—— pmpc IO D5 — >
16207000040 0
M2 Y10
|—m— PTLDC PTO D20 —C)

The PT< instruction checks the address of the pointer type variable PTO to determine whether it is greater than the D
address, e.g., if the PTO pointer points to D10, a comparison with D5 will output YO as OFF, and a comparison with D20
will output Y10 as ON. similar check instructions PT>=, PT<, PT<=, PT=, PT<> can implement the PT pointer pointing
judgment check

Example 8

Indirect Addressing of Pointer Type Variables

Pointer type variables can be used in instructions that represent indirect addressing operations on soft components or array

variables pointed to by the pointer variable after the address has been obtained through the address operation instruction

Suzhou Veichi Electric Co.,Ltd
Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
20 / 30

VEICHI Fa]@m s [vercht.com

Add the soft component pointed by FTO to D100

{+1

[

AT *FT0 n1ao D300]

L

When the instruction energy stream is valid, the soft component pointed by the pointer type variable PTO is added to D100.
If PTO points to D10, the result of the instruction execution is D300 = D10 + D100,

Description: To use a pointer type variable to indirectly represent the soft component it specifies; a valid pointer address

must first be obtained through the pointer address operation instruction.

5. Function Block FB

A function block (FB) can abstractly encapsulate reused parts of a program into a common block that can be called
repeatedly in the program. The use of encapsulated function blocks in programming increases the efficiency of program
development, reduces programming errors, and improves program quality. Function blocks are capable of generating one
or more values during execution. Function blocks retain their own special internal variables, and the controller execution
system allocates memory to the internal state variables of the function block, which constitute their own state characteristics.
For the same parameter input variable value, which may exist in different internal state variables, different calculation
results will be obtained.

The basic steps of using function blocks are: New function block -> Function block programming -> Function block

instantiation -> Run function block -> Package export function block -> Import function block.

5.1 New Function Block (FB)

With Auto Studio software, you can create new function blocks
Right-click "FB Function Block" under the "Program Block" node and select New to complete the function block creation.

The function block name can be modified by the function block properties.

Suzhou Veichi Electric Co.,Ltd
Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
21 / 30

VEICHI

DRIVE FOR EVER

ﬁaﬁ“ EE.'-__L (© 400-600-0303

] veicHLcom

Project Manager o :
=-5d Custom Variables(VC5) ’
=l Global Variable

--[=] System Variable

~-[E] Element Comment

EIEI Struct

L[] Struct_1

=25 Program block

5.2 Function block programming

Double-click the newly created function block under the "Function Block (FB)" node to enter the function block program
editing interface. Compared with the normal program editing interface, the function block program editing interface has an

additional input/output and local variable definition window.

[MAIN* | € VAR 1| £ vaR 2 [F]_FB.01 x | [F] FC01| =
Power-off Hold Comments [
Not Hold
Not Hold

Index |Variable Name e Type \Data Type |Inrcla\ Value
1 addin IN INT 0

2 addout ouT 0

3

1. Variable name: The name of the variable

x [MAIN* | [S] SBR 01 * | £ System Variable”[F] FB 01 x
“||[Index |Variable Name Variable Type Data Type Intial Value | Power-off Hold Comments
1 Ccu IN BOOL OFF Not Hold
2 RESET ouT BOOL OFF Not Hold
3 PV IN INT 0 Not Hold
4 Q ouT BOOL OFF Not Hold
3 cv ouT INT 0 Not Hold
5
2. Variable type: attribute of function block variable
Variable Type Type Description Description
IN Input Variables Parameters are provided by the logical block that calls it, and input is passed to the
logical block's instructions
ouT Output Variables Provide parameters to the logical block that calls it, i.e. output structural data from the
logical block
IN_OUT Input and output | Input and output variables can not only be passed into the called logic block, but can
variables also be modified inside the called logic block
TEMP Local variables Valid only in this logical block and cannot be accessed externally.

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

22 /30

3. Data Type

Variable data types support BOOL, INT, DINT and REAL, and array variables and structures can be defined. If you use

structure variables, you need to create structure members in the structure of global variables
4. Initial Value

Set the initial data at the beginning of variable execution.

5. Power down hold

The power-down hold property can set the variable as a hold or non-hold property

e "Non-hold", the variable reverts to the value set in the initial value after power-up;

e If "Hold" is checked in the system parameters, such as "Initialize power-down hold variables when downloading", the
variables will be restored to the values set in the initial values when the program is downloaded, otherwise the last run
value will be maintained.

Function block programs are programmed using ladder diagrams. Inside the function block program, functions (FC) or
function blocks (FB) can be called, supporting up to 6 levels of nested calls, the

MAIN ->FB 01 ->FB 02 ->FB 03 ->FB 04 ->FB 05->FB 06.

Function block programs can use soft components supported by VCS5 as global variables in addition to variables, such as
SMO0

5.2.1 Example - wrapping incremental count with FB

1. The FB program is programmed as follows:

M MAIN * | [S] SBR 01* | {3 System Variable” [F] FB 01 x

Index |Variable Name Variable Type Data Type Inttial Value |Power-off Hold Comments
1 cu IN BOOL OFF Not Hold
2 RESET ouT BOOL OFF Not Hold
3 PV IN INT 0 Not Hold
4 Q ouT BOOL OFF Not Hold
5 cv ouT INT 0 Not Hold
V]
Anmotation
#CU
I S— ¢ LV 32767 H I v
#EESET
Moy o oV]
4
I b= LY HEV — 3
Anmotation

2. Function block instantiation calls

After writing the FB program and using it in the application, you need to instantiate the function block to call

Edit instruction parameters and assign variable names as required by the program to complete the instantiation of function
block calls.

Suzhou Veichi Electric Co.,Ltd
Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
23/ 30

=t [E! Struct
| Struct_1
~[Z Function Block Data
=] [variable Table
- 1VAR_1
- [C] VAR 2
4-&3 Program block
[MAIN
F#-[5] SBR_01
'm INT_01

3-[F] FC Function
“[Fl Fc_o1
--[=] Data block
-] System block
-} Extension Modules
@ E-CAM
3-ZE Cross reference table
7~ Element monitoring table
[l Element Memory Table
3= Instruction Wizard
-4 Communication Config
=% COMO

3. Run function blocks

[] veicHI.com

p
o

) 400-600-0303

Annotation

et n)

1 — MOV

array([0] il
|

brnetation

bnnotation

Invoke Subprogram X B
Subprogram |FB_01 ~
Variable name variable typ data type |import value comment —
Cu IN BOOL MO F
RESET ouT BOOL M1
PV IN INT D100
Q ouT BOOL M2
v ouT INT D200
Variable CTU| Cancel

When the function block is instantiated, the En of the function block is connected to the ladder network. when the En

network energy flow is active (ON), the function block program is executed and the output of the function block is refreshed

and changed according to the input condition and the internal variable state. when the En network energy flow is active

(OFF), the function block program is not executed and the function block output is not refreshed.

The counter function block CUT energy flow condition is ON, the function block is executed, and the output CV is added

1 when the input condition CU rising edge changes.

M100 FB_test:CTU
il Enable
OFFMO— CU
OFF M1 — RESET
10D100— PV

Q—M2 OFF

CV—D200 2

refreshed when the input condition CU rising edge changes

M100
11

FB_test:CTU
Enable
ONMO— CU
OFF M1 —{ RESET
10 D100 — PV

Q—M2 OFF

CV—D200 2

5.2.2 Function block import and export

Function block export

Counter function block CUT energy flow condition is OFF, the function block is not executed, and the output CV is not

The edited and debugged function blocks can be wrapped into files. The function blocks encapsulated into files can be

reused in different programs through Auto Studio's file management.

Under File Options, select "Program File Export", select the FB function block to be exported, set the export path, and

click Export Program.

Suzhou Veichi Electric Co.,Ltd
Address: N0.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

24 / 30

VEICHI

DRIVE FOR EVER

HERS

] veicHL.com

(@ 400-600-0303

[File | Eqit view Ladder PLC Debug Tool

=RE

New Project Ctrl+N
Open Project...
Save Project
Save Project As...

/

Close Project

Ctrl+ O

Change PLC Type... /
Save File / Ctrl+S
Program File ExpoMe:.

Close File

Program File Import...

Import Project

»

Print... Ctrl+P
Printing Setup...

Printing Preview

1 Custom Variables

2 CAUsers\.A\Template\Template

3 ChUsers\.A\Template\Template

4 DAchengxu\BE¥IsS\HE W Iirs

Exit

Program Export X
Export path
C:\Users\v5415\Desktop',
Select | Program nami| Program type |Export prograi| Program description
O |sBR_01 User subprogr|SBR_01
O |INT_01 Interrupt subp|INT_01
FB_01 FB Function Bl FB_01
O |FC_01 FC Function |FC_01

After the successful import of function blocks, the corresponding FB function block program file will be generated under
the path

RN § WS PR

AutoStudio

S5, AThIA, KMO

X

=T

Function block import

FB test.EXP

Function blocks exported as libraries can be called in other programs by means of import

Under File Options, select "Import Program Files", select the file storage path, select the FB function block to be imported,

and click Import Program.

Suzhou Veichi Electric Co.,Ltd

Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
25/ 30

VEICHI {%ﬁum: [veicHLcom (© 400-600-0303

DRIVE FOR EVER

o AutoStudio - |DAchengxunCustom Vanal

File Edit View Ladder PLC Debug Too Program Import X
I Mew Project Ctri+=N
Open Project... Ctrl+0O Import path
Save Project C:\Users\v5415\Desktop) E

Save Project As...

|

Close Project

Change PLC Type. Select program nami\program type mport prograr program description

Sawve File Ctrl+S

Close File
Program File Export... »
Program File Import... <fe——

Import Project >

Print... Ctrl+P
Printing Setup...

Printing Preview

1 Custom Variables

2 ChUsers\.\Template\Template
3 CAlUsers\.ATemplate\Template
4 DAchengxu\BEYFEE\BEVIFS Import program Close

Exit

After the successful import, you can see the successfully imported functlon blocks under FB functlon blocks.

4 Global Varisble 1w i BOOL OFF Mot Hold
System Variable 2 RESET ouT BOOL OFF Mot Held
Element Comement a2 o ™ N a At Heled
Struct [T
Fursction Block Data [=] ;i
Variable Table [b—t & = i L i

VAR 1 e
VAR 2 — ——t Wy 0 e
&% Program block
3 Fl MAIN oy o e
5 588 01 C:\sergheS4 15 Dasidng), .
[INT 01 Reatation AutoStudic

I
I

F! FB Function Block
F
F| FC Function
FLFC_01
Duata block
[System blak
0 Extension Modules
& E-CAM
3 = Cross reference table
1 ™ Element monitoring table
Element Memory Table a2 isgr et
F Imstruction Wizard
' Communication Confin

[E

Imgort finkshed, 1 succeeded, O falled

Clesa

5.2.3 Function block setting initial value

The initial value of FB setting can be modified by either FB type or FB instantiator.

o If the initial value is modified by the FB type, it is equivalent to modifying the initial value of the type.

e If the initial value is modified by the FB instance, it is equivalent to modifying the initial value of the instance.
e [f the initial value of the instance is modified, the FB instance member variable will show the modified value.
oIf the initial value of the instance is not modified, the FB instance member variable displays the default value.

FB modify the initial value

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
26 / 30

VEICHI

DRIVE FOR EVER

HElRS

[] veicHL.com

{2

400-600-0303

Project Manager % M| MAIN | £3 VAR 2" L} Function Block Data x |
E"E_ Custom Variables(VC5) “||lindex Variable Name DataType Initial Value | Note
[=+[al] Global Variable 1 au FB 01
[E] System Variable 2 - Hﬁ
= Element Comment
== Struct Init Value ‘ 3
I [T] Struct_1
B Function Block Data Variable Name DataTvpe Elenent Initial ValiNote
£ Variable Table = ctu FE_01
~LIVAR_1 - oo BOOL OFF
~L1 VAR 2 - RESET ROOL OFF
=27 Program block - o .
i[[MAIN
B SBR_01 CR EBOCL OFF
LT INT 01 - oy INT 10
=+F| FB Function Block
: FB_ 01
= [F] FC Function
LF] FC 01
[Z] Data block
[System block
£} Extension Modules
A E-CAM
[H- Cross reference table

FB function block is not enabled, open the function block, you can see the initial value of the function block

I MAING < £ g | || [F] FB_test x | -
B BRAK TR BURE MR ~ [[EE#H® T FoREN YU FORGLS [VERE A
\ TEMP BOOL v ([|cu N BOOL OFF EE v
> < >
LR ~ FiR 3 ~
M100 FB_test:CTU HCU 10 0
) { Enable —— < #V 32767 H Ne #V
OFF M0— CU Q—M2 OFF
10
OFF M1 — RESET CV|—D200 0 HRESET
MOV 0 AV]
0D100— PV
10 3
TER Q
f = =V =PV —< b)
10 0
SMO
—— MoV =V D1000]
When the FB function block is enabled, the FB instance member variable will display the modified value
M MAIN x | {3 it | | TF] FB_test x| s
F5 FRARK A BURRN IER ~ s mEARK AR BN PR FERAUE VERE] A
\ TEMP BOOL v ([l cu IN BOOL OFF AR v
< > < >
TER " [~
M100 FB_test:CTU HCU 10 10
0 {7 Enable —t— < #CV 32767 H INC #OV
OFFMO— CU Qp—M2 0N
10
OFF M1— RESET CV[—D200 10 HRESET
— MOV 0 #CV]
0D100— PV
TR 10 0
H ¥= #CV #PV [—)
10 10
SMO
— 1 MoV £y D1000 1

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

27 / 30

6. Function Block FC

[] veicHLcom

(’@ 400-600-0303

Functions (FC) are independently encapsulated blocks that can define input/output type parameters and can define non-

static internal variables, i.e., the same output is obtained when a function is called with the same input parameters. The

important feature of a function is that its internal variables are static, there is no internal state storage, and the same input

parameters can get the same output, which is the main difference between a function (FC) and a function block (FB).

Function (FC), as a basic algorithmic unit, is commonly used in various mathematical operation functions, such as sin(x),

sqrt(x), etc. is a typical function type.

The basic steps for using functions are: New Function -> Function Programming -> Call Function -> Run Function ->

Wrap Export Function.

6.1 New function

Right-click on "FC Function" under the "Program Block" node and select New to complete the function block creation.

The function block name can be modified by the function block properties

Project Manager

=5 Custom Variables(WC5) -~

6.2 Function Block Programming

2

=-1F]

Ellﬁl Global variable

- [=] System Wariable

=] Element Comment

Struct

[C] Struct_1

+[=] Function Block Data
EIIEI Variable Table

e E wAR_

% Program block

=1-[F] FB Function Block
- [Fl FB_O1

------ =] Data I:_:Iock
- System block
------ L} Extension Modules

Double-click the new function under the "Function (FC)" node to enter the function editor interface. The function program

editor interface is similar to the function block, but compared with the normal program editor, there is an additional

input/output and local variable definition window

Suzhou Veichi Electric Co.,Ltd

Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

28 / 30

[] veicHL.com

Y i
ﬁ;:y 400-600-0303

[M| MAIN [|S] SBR 01 | £ System Variable | [F] FB 01"[F] FC 01 x
Index |Variable Name Variable Type Data Type Comments
1 addl IN REAL
2 add2 IN REAL
3 smout ouT REAL
4

In the Input-Output and Local Variable Definition window, you can define input (IN), output (OUT), input-output (INTOUT)

and local variables (VAR) for function blocks. Variable data types support BOOL, INT, DINT and REAL, and array

variables and structures can be defined. If a structure variable is used, the Structure members need to be created in the

structures of global variables.

e In contrast to the variables of function blocks, function variables cannot define initial values and all local variables are
non-holding.

e Function programs are programmed using ladder diagrams, and inside function programs, functions (FC) can be called.

The function itself can be called by other functions, function blocks, and programs.

e Function programs can use SMO as a constant ON variable in addition to variables.

e Instructions related to state or multi-cycle execution, such as LDP, MC Power, etc., cannot be used in function programs.

6.2.1 Example - Wrapping addition functions with FC

1. The FC functions are programmed as follows:

M MAIN SBR 01 | £} System Variable FB 01 [F| FC 01 x
Index Variable Name Variable Type Data Type Comments
1 add1 IN REAL
2 add2 IM REAL
3 smout ouT REAL
4

Anmotation

M0

Ha1 |} [RATD #addl #add? #=mout]

Anmotation

2. FC function calls
After writing the FC program, you can use it in your application or call it directly to use it.
Edit the instruction parameters and assign variable names as required by the program to complete the instantiation call of

the function block.

Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China
29 / 30

=5 Custom Variables(VC5)

=)-[ul] Global Variable

EI EI Struct
- [T Struct 1

-] Variable Table
[VAR 1
| VAR_2
=-&a Program block
e[

[5] SBR_01

'm INT_01

~[E] FB_O1
=-[E] FC Function

[l System Variable
[E] Element Comment

[E] Function Block Data

=-[E] FB Function Block

[] veicHLcom

(’@ 400-600-0303

“ |l[1ndex

Variable Name

Variable Type
TEMP
TEMP

TFMD

Data Type
BOOL
BOOL

[=IaTal]

Armotation

Mo

- —

EMOV

array[0]

o

Armotation

Mioo
1

Enable

MO —CU

D100 —FY

FE_01:CT

RESET

O —Mmz

C¥ —Dz00

— M

Armotation

SMO

Enable

e [F FC O+
-] Data block
- System block

@ E-CAM

3. Run the function

- L} Extension Modules

H--25 Croce raferance tahla

0100 — addl

—, |

FC_01

smout

—oi04

Armotation

When the En network is active (ON), the function program is executed and the output of the function is refreshed according

to the input state operation; when the En network is active (OFF), the function program is not executed and the output of

the function block is not refreshed.

456. 0000 D102— add2

\o FC_O1
|} Enable
123.0000D100— addl sumout [—D104 579. 0000

6.2.2 Function block import and export

The procedure for wrapping functions is similar to that for function blocks, please refer to the section "Import and Export

of Function Blocks".

Suzhou Veichi Electric Co.,Ltd

Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic
and Technological Development Zone, Suzhou, Jiangsu, China

30 / 30

	1. Variables
	1.1 Custom Variables
	1.2 Define Variables
	1.3 Defining Arrays
	1.4 Defining Structs
	1.5 How to use variables

	2. Binding of variable addresses
	2.1 Overview
	2.2 Variable Properties
	2.3 Array variable binding soft components
	2.4 Structure variable binding soft components

	3. Using variables as array subscripts
	3.1 Rules of Use
	3.2 Programming Examples
	3.2.1 Example 1
	3.2.2 Example 2
	3.2.3 Example 3

	4. Pointer type variables
	4.1 Definition of pointer type variables
	4.2 PT Pointer Address Operation

	5. Function Block FB
	5.1 New Function Block (FB)
	5.2 Function block programming
	5.2.1 Example - wrapping incremental count with FB
	5.2.2 Function block import and export
	5.2.3 Function block setting initial value

	6. Function Block FC
	6.1 New function
	6.2 Function Block Programming
	6.2.1 Example - Wrapping addition functions with FC
	6.2.2 Function block import and export

